Name:	Date:	Block:
	Algebra 2 Honors- Week 16 Homework	

Monday-

ID: 1 Algebra 2 Name Rational Equations Assignment Date Period © 2013 Kuta Software LLC. All rights reserved. Solve each equation. Remember to check for extraneous solutions, 1) $\frac{1}{2m} + \frac{1}{6} = \frac{1}{m}$ 2) $\frac{6n-1}{n^2} = \frac{1}{n} + \frac{1}{n^2}$ 3) $\frac{1}{n+5} = \frac{6}{n} - \frac{5}{n+5}$ 4) $\frac{n-4}{2n+10} = \frac{3n+3}{n+5} + \frac{1}{n+5}$ 5) $\frac{1}{a} = \frac{a-2}{a} - \frac{6}{a^2 - 4a}$ 6) $\frac{n-2}{n+5} = \frac{1}{n^2 + 11n + 30} + \frac{n+1}{n+5}$ 7) Bob and Glen can clean the whole house in 4 hours. If Bob can clean the house in 6 hours by himself, how long will it take just Glen?

8) Explain how you know if a rational equation has an extraneous solution.

Tuesday- Catch up on homework from last week and study for test tomorrow!

Practice Test for Rational Functions Unit

Learning Objectives:

- A. Find the quotient of monomials.
- B. Simplify expressions with negative exponents.
- C. Graph rational functions using transformations.
- D. Identify the asymptotes, domain, range and intercepts of a rational function.
- E. Model a scenario using rational functions.
- F. Simplify rational expressions.
- G. Solve an equation with rational coefficients.
- H. Solve rational equations.

Question #	Learning Objective	Know It	Feel Unsure	Right	Wrong	Simple Mistake	Need to Study
1	А						
2	В						
3	С						
4	D						
5	D						
6	Е						
7	F						
8	Н						
9	Ι						
1. $\frac{m^4}{4n^3} \cdot \left(\frac{m^4}{4n^3}\right)$	$\left(\frac{2n}{m^3}\right)^3$	$2.\frac{(p^2q^2)}{p^2q^2}$	$\frac{q}{q^{-1}}$	3.	Graph: $f(x)$	$=-\frac{1}{x+2}-3$	3

- 1. $\frac{1}{4n^3} \cdot \left(\frac{1}{m^3}\right)$
- 4. Identify the domain, range and intercepts of the function in #3.
- 5. Write a rational function that has no y-intercepts and exists only in the first and second quadrants.
- 6. To attend a power lifting class, you must pay \$100 per year plus \$3 per class.
 - a) What is the average cost per class if you attend 10 classes?
 - b) What is the average cost per class if you attend 50 classes?
 - c) Write a function that find the average cost C give classes attended x.
 - d) What is the domain of this function and what does it say about the scenario?
- e) Another power lifting class offers classes for \$6 each with no annual fee. Is this a better deal? Explain your

reasoning.

7. Simplify
$$\frac{y^2 - 4}{y^2 + y - 6}$$

8. Solve: $\frac{x+1}{6} = x - \frac{3x-2}{4}$
9. Solve: $\frac{2}{x+2} + \frac{x^2}{x^2 - 4} = \frac{1}{x-2}$

Wednesday- Test Day! (No Homework)

Thursday-Rational Exponents Assignment

Simplify. 1. $81^{\frac{1}{2}}$ 2. $27^{\frac{2}{3}}$ 3. $125^{-\frac{1}{3}}$ 4. $16^{\frac{3}{4}}$ 5. $-9^{\frac{3}{2}}$ 6. $25^{\frac{3}{2}}$ Rewrite in exponential form. 7. $\sqrt{x^5y^6}$ 8. $\sqrt[3]{x^5y^6}$ 9. $\sqrt[4]{16ab^6}$ 10. $\sqrt[3]{\frac{x^2y^7}{z^3}}$ Express in simplest radical form. 11. $\sqrt[3]{4} \cdot \sqrt[3]{4}$ 12. $\sqrt{8} \cdot \sqrt[6]{8}$ 13. $\frac{\sqrt[3]{4}}{\sqrt[6]{2}}$ 14. $\sqrt[10]{32} \div \sqrt[8]{4}$

15. Determine which two expressions are not equivalent to $\sqrt[3]{\frac{2^4}{4^6}}$. Explain how you know.

a)
$$\frac{2^{\frac{4}{3}}}{4^{\frac{6}{3}}}$$
 b) $2^{\frac{4}{3}} \cdot 2^{\frac{12}{3}}$ c) $2^{-\frac{8}{3}}$ d) $\frac{1}{2^{\frac{6}{3}} \cdot 2^{\frac{2}{3}}}$ e) $\frac{1}{4\sqrt{8}}$

Friday-Real Number Exponents Assignment Simplify.

$1.3^{\sqrt{2}}\cdot3^{\sqrt{2}}$	$2.\left(3^{\sqrt{2}}\right)^2$	$3. \left(3^{\sqrt{2}}\right)^{\sqrt{2}}$	4. $(10^2)^{\pi}$ 5. $\sqrt{10^{2\pi}}$
6. $10^{2\pi+3} \cdot 10^{5-\pi}$	$7.\frac{10^{\sqrt{3}-2}}{10^{\sqrt{3}+2}}$	$8. \frac{6^{\sqrt{2}} \cdot 6^{\sqrt{8}}}{6^{3\sqrt{2}}}$	$9.\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}$
Solve the equation.		-	
$10. a^{\frac{3}{4}} = 8$	$11. y^{-\frac{1}{2}} = 6$	12. $4p^{\frac{3}{5}} = 24$	$13.(3n-1)^{\frac{3}{2}}=125$
14. $3^x = 27$	$15.2^{x} = \frac{1}{8}$	$16.25^{2x} = 5^{x+6}$	17. $4^{x+1} = 8^{x-3}$
18. $6^{x^2+7} = 36^{4x}$	0		