Monday- Catch up for the week and study for test tomorrow!

Practice Test for Polynomial Unit

Learning Objectives:

- A. Simplify expressions using exponents.
- B. Identify whether an equation is an identity.
- C. Add and subtract polynomial functions.
- D. Multiply polynomial functions.
- E. Factor polynomials using GCF or grouping.
- F. Factor trinomials.G. Factor a difference of squares.
- H. Factor a sum or difference of cubes. I. Solve a factorable polynomial equation.

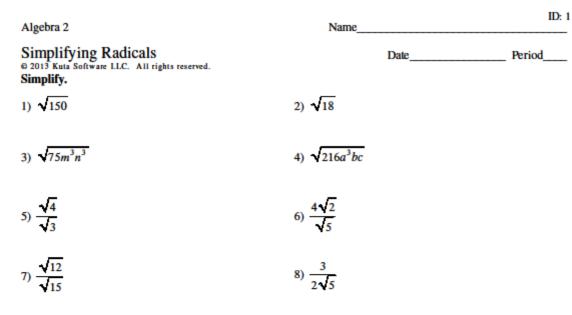
Question #	Learning Objective	Know It	Feel Unsure	Right	Wrong	Simple Mistake	Need to Study
1	A						
2	B						
3	С						
4	D						
5	E						
6	E						
7	F						
8	G						
9	H						
10	I						

- Simplify: (3x²yz³)²(-4xyz⁵)³
- 2. Which of these equations are identities? How do you know?
 - a) $(x+3)^2 = x^2 + 9$ b) $x^2 9 = (x+3)(x-3)$ c) 2(x-3) = 2x+6
- 3. Given $f(x) = 5x^4 3x^3 + 5x 3$ and $g(x) = 2x^4 + 6x^2 7x 3$, find f(x) + g(x) and f(x) g(x).
- 4. Given f(x) = 3x + 4 and $g(x) = x^2 3x 7$, find $f(x) \cdot g(x)$.
- Factor: 3x²yz³ 12xy⁴z³
- Factor: 4x³ 12x² 5x + 15
- 7. Factor each trinomial: a) $x^2 3x 88$ b) $3x^2 + 16x + 5$ c) $8x^2 2x 3$
- Factor: 9x⁴ 64y²
 Factor: 64x³ + 1
- 10. Solve the equation: $3x^2 + 13x = 10$

Tuesday- No homework! Test Day!

Name:	
nume.	

Wednesday-Number System Assignment


1. Mark an X for each category that applies.

Number	Real	Rational	Irrational	Integer	Whole	Natural
-6						
62%						
0						
π/2						
2.7						
2/5						
√7						
√25						
1						
1/2						

Give an example of a number that would satisfy these rules.

- 2. A number that is an integer but not whole.
- 4. A number that is real but not rational.

- 3. A number that is whole but not natural.
- 5. A number that is an integer but not rational.

Find a decimal approximation (with out using a calculator) for each square root and describe your method,

9) $\sqrt{26}$ 10) $\sqrt{50}$

Block:

Name:	Date:	Block:
Thursday-		
Algebra 2	Name	ID: 1
Imaginary Numbers © 2013 Kuta Software LLC. All rights reserved. Simplify.	Da	te Period
1) √-63	2) -7 √63	
3) -6 175	4) -6 -6 · -10	

5)
$$4\sqrt{-8} \cdot 2\sqrt{-2}$$
 6) $-\sqrt{-5} + 2\sqrt{-5}$

7)
$$-3\sqrt{-6} - \sqrt{-54}$$
 8) $-\sqrt{-2} + 2\sqrt{-18}$

9)
$$\frac{7}{5i}$$
 10) $-\frac{1}{i}$

Identify the value and explain how you came to your solution.

Name:	Date:	_Block:
Friday- Simplify each of the following:		
1. (3+4i)+(19-5i)	2. (7-3i)+(4+8i)	
3. (6-5i)+(-9+3i)	4. (8 - 10i) – (1 + 6i)	
5. (10+3i) - (-7+11i)	6. $(5+8i)+(12+7i)-(3i)$	3–2i)
7. (4+2i)(1-3i)	8. (6-5i)(-4+6i)	
9. (5i)(1+3i)	10. $(4-5i)^2$	