Practice Test for Final-

Unit 1- Modeling with Expressions and Equations

Questions: 3, 4, 5, 6, 7, 9, 11, 13

Unit 2- Functions

Questions: 1, 2, 3, 5, 6, 13, 14

Unit 3- Polynomials

Questions: 1, 3, 4, 5, 6, 7, 8, 9, 10

Unit 4- Complex Numbers and Quadratic Equations

Questions: 7, 8, 9, 10, 11, 12

Unit 5- Radical Functions

Questions: 1, 2, 3, 4, 5

Unit 6- Polynomial Functions

Questions: 2, 4, 5, 6, 7, 9, 11

Unit 7- Rational Functions

Questions: 3, 4, 6, 7, 8, 9

Practice Test for Exponential and Logarithmic Functions Unit

Learning Objectives:

- A. Simplify rational exponents.
- B. Rewrite a root as a rational exponent.
- C. Use rational exponents to rewrite an expression in simplest radical form.
- D. Simplify real number exponents
- E. Solve an equation with rational exponents.
- F. Write a function to model an exponential situation.
- G. Use an exponential model to answer questions about a real life situation.
- H. Identify the major features of an exponential graph: y-intercept, asymptote, domain and range.
- I. Graph an exponential growth or decay function.
- J. Use transformations to sketch the graph of an exponential function.
- K. Identify how the base of an exponential function affects the shape of the graph.
- L. Transform a logarithm to an exponent and an exponent to a logarithm.
- M. Simplify a logarithm.
- N. Solve an exponential equation by converting it into a logarithm.
- O. Solve a logarithmic equation by converting it into an exponent.
- P. Identify the major features of an logarithmic graph: x-intercept, asymptote, domain and range.
- Q. Graph a logarithmic function.
- R. Use the compound interest formula to answer questions about interest.
- S. Use the continuous growth or decay function to model a real life situation.

Question #	Learning Objective	Know It	Feel Unsure	Right	Wrong	Simple Mistake	Need to Study
1	A						
2	В						
3	С						
4	D						
5	Е						
6	Е						
7	F						
8	G						
9	H, I						

10	H, I				
11	J				
12	K				
13	L				
14	M				
15	N				
16	O				
17	P, Q				
18	R				
19	S				

- 1. Simplify: $32^{-\frac{4}{5}}$

- 4. Simplify: $3^{3\pi-1} \cdot 3^{\pi+4}$
- 2. Rewrite as an exponent: $\sqrt[4]{2x^6y^8}$ 3. Rewrite in simplest radical form: $\sqrt[4]{27} \cdot \sqrt[3]{81}$ $5. \text{ Solve: } x^{\frac{2}{5}} + 5 = 14 \text{ 6. Solve: } 36^{\frac{x}{5}} = \frac{1}{\sqrt{6}}$
- 7. A mouse population is 10,000. It is decreasing at a rate of 20% per year. How many will be left in 2 years?
- 8. In problem #7, when will the population be half the original size?
- 9. Graph this function using two majors points: $f(x) = 5^x$ Identify the domain, range, y-intercept and asymptote.
- 10. Graph this function using two majors points: $f(x) = \left(\frac{1}{3}\right)^x$ Identify the domain, range, y-intercept and asymptote.
- 11. Given the function: $f(x) = \left(\frac{1}{3}\right)^x$, find $f(x) = -\left(\frac{1}{3}\right)^{x-4} + 7$. 12. Explain how making b in $f(x) = b^x$ larger or smaller changes the shape of the graph. What values cannot be b?
- 13. a) Convert to a logarithm: $5^{\frac{1}{2}} = \sqrt{50}$, b) Convert to an exponent: $log_{11}1 = 0$ 14. Simplify $log_{9}27$
- 15. Solve: $5^{x-1} = 100$ 16. Solve: $log_x 20 = 3$
- 17. Graph this function using two major points: $f(x) = log_{\tau}x$ Identify the domain, range, y-intercept and asymptote.
- 18. I invest \$7500 into an account that gets 5% interest compounded monthly. When will I double my money?
- 19. An adult takes 400 mg of ibuprofen. Each hour, the amount of ibuprofen in the person's system decreases by about 29%. How much ibuprofen is left after 6 hours?