Practice Test for Radical Functions Unit

Learning Objectives:

A. Graph a quadratic equation using transformations.
B. Use the area of squares to model a quadratic function.
C. Graph a radical function using transformations.
D. Identify the domain and range of a radical function.
E. Solve radical equations.
F. Use a graph to find the solution to a radical equation.
G. Identify extraneous solutions in a radical function.

Question \#	Learning Objective	Know It	Feel Unsure		Right	Wrong	Simple Mistake	Need to Study
1	A							
2	B							
3	C							
4	D							
5	E							
6	F							
7	G							

1. Graph each quadratic function:
a. $\quad f(x)=(x+2)^{2}-4$
b. $f(x)=3(x-4)^{2}$
c. $\quad f(x)=-\frac{1}{2}(x+4)^{2}+2$
2. Draw an area model to represent: $f(x)=3(x+2)^{2}-2$
3. Graph: $f(x)=-2 \sqrt{x+1}+3$
4. Identify the domain and range of the function in problem 3.
5. Solve:
a. $2+\sqrt{x+5}=3$
b. $\sqrt{5 x+14}=x$
c. $\sqrt{3 x+5}=\sqrt{x+1}$
6. Graph this equations to solve: $\sqrt{x-2}+2=4$
7. Write a radical equation with an extraneous solution. Prove why it has an extraneous solution.
