Practice Test for Radical Functions Unit

Learning Objectives:

- A. Graph a quadratic equation using transformations.
- B. Use the area of squares to model a quadratic function.
- C. Graph a radical function using transformations.
- D. Identify the domain and range of a radical function.
- E. Solve radical equations.
- F. Use a graph to find the solution to a radical equation.
- G. Identify extraneous solutions in a radical function.

Question #	Learning Objective	Know It	Feel Unsure	Right	Wrong	Simple Mistake	Need to Study
1	A						
2	В						
3	С						
4	D						
5	Е						
6	F						
7	G						

1. Graph each quadratic function:

a.
$$f(x) = (x+2)^2 - 4$$

b.
$$f(x) = 3(x-4)^2$$

a.
$$f(x) = (x+2)^2 - 4$$
 b. $f(x) = 3(x-4)^2$ c. $f(x) = -\frac{1}{2}(x+4)^2 + 2$

- Draw an area model to represent: $f(x) = 3(x+2)^2 2$
- Graph: $f(x) = -2\sqrt{x+1} + 3$
- 4. Identify the domain and range of the function in problem 3.
- Solve: 5.

a.
$$2 + \sqrt{x+5} = 3$$

b.
$$\sqrt{5x + 14} = x$$

c.
$$\sqrt{3x+5} = \sqrt{x+1}$$

- Graph this equations to solve: $\sqrt{x-2} + 2 = 4$
- Write a radical equation with an extraneous solution. Prove why it has an extraneous solution.