Practice Test for Polynomial Functions Unit

Learning Objectives:

A. Divide polynomials using long division.
B. Divide polynomials using synthetic division.
C. Use synthetic division to determine evaluate a function.
D. Determine whether a binomial is a factor a polynomial.
E. Use the roots of a polynomial to write a polynomial function.
F. Solve a polynomial equation with rational roots.
G. Solve a polynomial equation with rational and irrational roots.
H. Graph a polynomial using the zeros and end behavior.
I. Identify the end behavior of a polynomial function.
J. Graph a polynomial using transformations.
K. Identify the local minimum and maximums of a polynomial function.
L. Identify the interval of increase and decrease of a polynomial function.
M. Model volume with a polynomial function.

Question \#	Learning Objective	Know It	Feel Unsure		Right	Wrong	Simple Mistake	Need to Study
1	A							
2	B							
3	C							
4	D							
5	E							
6	F							
7	G							
8	H							
9	I, L							
10	J, L							
11	K, L							
12	I, J							
13	M							
14	N							

1.Divide $x^{2}+3 x-1$ into $x^{3}+5 x^{2}+4 x-1$ using polynomial long division.
2. Use synthetic division to divide $2 x-1$ into $x^{3}-3 x^{2}+7 x-4$.
3. Given $f(x)=x^{4}-2 x^{3}+7 x-4$, find $\mathrm{f}(3)$.
4. Determine whether $x+3$ is a root of $f(x)=2 x^{3}+4 x^{2}-5 x+9$.
5. Write a polynomial equation given the roots: $2,3,5 i$.
6. Find all the rational roots for: $x^{3}-x^{2}-14 x+24=0$.
7. Find all the rational and irrational roots for: $2 x^{4}-5 x^{3}+8 x^{2}-15 x+6=0$.
8. Given $f(x)=x^{3}+3 x^{2}-9 x+5=0$, find the zeros and sketch a graph.
9. Describe the end behavior of the given polynomial: $-5 x^{4}-x^{2}+25=0$.
10. Use transformations to graph: $f(x)=2(x-3)^{3}+4$.
11. Identify the local minimums and/or maximums as well as the intervals of increasing and decreasing.

12. Write a polynomial equation for the graph to the right (notice the x and y-intercepts).
13. A box with a square base has a height that is two inches more than the length or width.
a)Write a polynomial function that models the volume of this box.
b) What is the volume of the box if the base has side length 5 in ?
c) What is the length of the base if the polynomial has $45 \mathrm{in}^{3}$?

